

BLH

DXp-40 "Expert" Weight Transmitter Operator's Manual

TM008 RevI 6/1/11 Doc 35104

NOTICE

BLH makes no representation or warranties of any kind whatsoever with respect to the contents hereof and specifically disclaims any implied warranties or merchantability or fitness for any particular purpose. BLH shall not be held liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this publication or its contents.

BLH reserves the right to revise this manual at any time and to make changes in the contents hereof without obligation to notify any person of such revision or changes.

Call (781) 298-2216 for BLH Field Service

Table of Contents

SECTION	N 1. General Information	1-1
1.1	Introduction	1-1
1.1.	1 General Description	1-1
1.1.	2 On-Line Diagnostics	1-1
1.1.3	3 Dynamic Digital Filter	1-1
1.1.4	4 Digital Calibration	1-1
1.2	OPTIONS	1-1
1.2.	1 Mounting Options	1-1
1.2.2	2 Display Window	1-2
1.2.3	3 Terminal Computer Interface	1-2
1.2.4	4 MODBUS RTU Protocol	1-2
1.2.	5 Allen-Bradley Remote I/O Network Interface	1-2
1.3	DXp-40 Specifications	1-4
1.4	DXp-40 Ordering Information	1-5
1.5	WARRANTY POLICY	1-5
1.6	FIELD ENGINEERING	1-6
SECTION	N 2. Installation	2-1
2.1	INTRODUCTION	2-1
2.1.	1 General	2-1
2.2	MOUNTING	2-1
2.3	ELECTRICAL	2-2
2.3.	1 Transducer Inputs	2-2
2.3.2	2 Serial Communication	2-2
2.3.3	3 Mains (AC) Power (Figure 2-4)	2-2
2.3.4	4 Auxiliary 110 Ports	2-3
2.3.	5 Optional Analog Output	2-3
2.3.	6 Optional Remote Inputs	2-3
2.3.	7 Optional Discrete Outputs	2-4
SECTION	N 3. Calibration	3-1
3.1	GENERAL	3-1
3.2	SETUP PARAMETERS	3-1
3.2.	1 Calibration Type	3-1
3.2.2	2 Number of Load Cells	3-1
3.2.3	3 Display Units	3-1

3	8.2.4	Decimal Point Location	3-1
З	8.2.5	Capacity	3-1
З	3.2.6	Count By	3-1
3	3.2.7	Zero Band	3-1
3.3	DI	GITAL CALIBRATION	3-5
З	8.3.1	Load Cell Calibration Data	3-5
3	3.3.2	Entering mV/V Calibration Points	3-5
З	3.3.3	Acquire Deadload	3-5
3.4	DE	ADLOAD TYPE CALIBRATION	3-9
3	8.4.1	Perform Corner Test (Sensitivity Adjust)	3-9
3	3.4.2	Acquire Zero	3-9
3	8.4.3	Span Point Entry	3-9
SECT	ION 4	Operation	4-1
4.1	G	NERAL	4-1
4.2	GI	ROSS WEIGHT WEIGHING	4-1
4.3	ZE	RO OPERATION	4-1
4.4	NE	T WEIGHT WEIGHING	4-1
4.5	TA	RE OPERATION	4-1
4.6	VI	EW INDIVIDUAL CELL DATA	4-1
4.7	EF	ROR DETECTION AND CORRECTION	4-1
SECT	ION 5	Dynamic Digital Filters	5-1
5.1	G	NERAL	5-1
5.2	FI	TER PARAMETERS	5-1
5.3	D	NAMIC FILTER	5-1
5	5.3.1	Band Filter	5-1
5	5.3.2	Noise Band	5-1
5	5.3.3	Response Band	5-1
5	5.3.4	Default Parameters	5-1
5.4	M	DTION DETECTION (Standard)	5-1
5.5	O	PTIONAL SECOND FILTER	5-1
SECT	ION 6	On-Line Load Cell Diagnostics	6-1
6.1	GI	NERAL	6-1
6.2	DI	AGNOSTIC TESTS	6-1
6	6.2.1	Load Shift	6-5
6	6.2.2	Zero Shift	6-5

6.2.3	Drift Test	6-5
6.2.4	Noise Test	6-8
6.2.5	Overload	6-9
6.2.6	Recall Values	6-9
6.2.7	Degrade Mode Function	6-12
6.2.8	Remote Input Enables (Optional)	6-13
SECTION 7.	Serial Communication	7-1
7.1 GE	NERAL	7-1
7.1.1	L.Cp-400 Digi System Network	7-1
7.1.2	Standard Simplex Output (Continuous Output).	7-1
7.1.3	Optional Computer/Terminal interface.	7-1
7.1.4	Optional MODBUS Protocol	7-5
7.1.5	Optional Allen Bradley Remote 110	7-10
SECTION 8.	Process Control	8-1
8.1 GE	NERAL	8-1
8.2 OP	FIONAL ANALOG OUTPUT	8-2
8.3 OP	FIONAL DISCRETE INPUTS and OUTPUTS	8-3
8.3.1	Inputs	8-3
8.3.2	Outputs	8-3
Appendix A –	Part Numbers	1
Appendix B. (Dutline and Wiring Diagrams	4
Appendix C. I	.Cp-40 Series Remote Display	5

SECTION 1. General Information

1.1 Introduction

1.1.1 General Description

The DXp-40 transmitter (Figure 1-1) is a microprocessor based device designed to convert the mV/V signal from up to four individual strain gage type force transducers (load cells) into a digital signal representing force, weight, or percent of span measurement units. Individually regulated, fault protected 10 VDC excitation is supplied to each transducer. Units operate at either 115 or 230 VAC. Standard DXp-40 transmitters are housed in NEMA 4 enclosures. NEMA 4X or explosionproof enclosures are available as options. The digital RS-485 serial output port is configured for various baud rate and protocol selections using a series of DIP switches. Entry of calibration data, diagnostic parameters, and filter selections is accomplished using a series of pushbutton switches. Figure 1-2 presents an overall flow diagram for establishing the calibration and system operating parameters which will be discussed in the following chapters. An internal multi-line LCD display is provided for viewing the setup sequence, diagnostic information, and live operation.

Instrument features include an RS 485 serial port with BLH Digi-System network or a simplex output protocol, four ND converter channels, 10 volt excitation per channel, digital filter, and a NEMA 4 mild steel, painted enclosure. Standard instruments are designed to meet Class I, II, Division 2, Group A-G hazardous location requirements.

1.1.2 On-Line Diagnostics

Weigh system diagnostics can be communicated from the DXp-40 serial port to a host computer. This real time information regarding system performance enables the host process computer to notify an operator and/or re-configure the system to go into degraded mode operation.

1.1.3 Dynamic Digital Filter

The dynamic digital filter uses statistical characterization of process noise to derive optimum filtering settings. Once the noise is characterized, the operator selects the combination of averaging and filter cutoff bands needed to maintain both display stability and fast response time for better set point control.

1.1.4 Digital Calibration

Digital calibration uses a factory calibration curve embedded in firmware to establish a reference between weight (force) and mV/V. This allows an operator to set-up and calibrate a weigh system without the need for deadweights or other time consuming calibration methods. For systems with mechanical interactions, this calibration method can be modified to correct for system non-linearities

Figure 1-1. DXp-40 Weight Transmitter

1.2 OPTIONS

1.2.1 Mounting Options

For corrosive, hose down, or sanitary environments, a NEMA 4X stainless steel enclosure is available. An explosion proof enclosure is available for Class I, II, Division 1, Group B-G locations. Note: BLH 406 or 408 Intrinsic Safety Barriers must be specified for weigh systems located in a Division area.

1.2.2 Display Window

To allow viewing of the internal multi-line display at all times, units may be ordered with a front door panel polycarbonate window. Window units also have a brighter vacuum fluorescent type display panel for even greater visibility. See paragraph 1.3 for display specifications and Figure 2-1 for outline dimensions.

1.2.3 Terminal Computer Interface

The terminal/computer interface option provides a simple mnemonic half-duplex ASCII communications protocol via a built-in macro language consisting of 1 to 3 character command strings (reference Table 7-3). This powerful feature allows direct keyboard control (using easily remembered commands) of DXp-40 operation and recall of weight values (gross, net, tare, zero, balance, etc.)

Easily learned macro language syntax greatly simplifies the writing of a host computer communication interface (customer supplied).

1.2.4 MODBUS RTU Protocol

MODBUS is often recognized as an industry standard method of digital communication

protocol between a master or host computer and a slave device. This protocol was originally developed by Modicon to communicate discrete and analog information —between PLCs. As implemented in the DXp-40, this protocol efficiently communicates weight and diagnostics information to a MODBUS driver equipped host.

1.2.5 Allen-Bradley Remote I/O Network Interface

The Allen-Bradley Remote I/O interface is a communication link that supports remote, time critical I/O control communications between a master processor and a remote 110 slave. It is typically used to transfer 1/0 bit images between the master and slave.

The DXp-40 represents a quarter (1/4) Rack of discrete I/O with 32 bits of input and output image files to the scanning PLC. All weight data and status information uses discrete reads and writes to communicate scale information to the PLC in the shortest time possible. Discrete transfers also are used to upload and download non-time critical information such as calibration and lower priority diagnostic data.

Figure 1-1. DXp-40 Calibration and Configuration.

DXp-40 Main Menu Flow Diagram

Ð

1.3 DXp-40 Specifications

Performance

4,194,304 total counts Internal Resolution Max. Display Resolution 3,000,000 total counts Max. Resolution Per Channel 750,000 counts Conversion Speed 50 msec (20 updates/sec) Sensitivity (Noise) 0.0011% full scale (max ±16 counts w/o filter) 35 mV/channel Full Scale Range 100% Dead Load Range 10 M-ohms, min. per channel Input Impedance Load Cell Excitation 10 V 2 x 350 ohm load cells, 65 mA/channel max user configurable on each channel Remote Sense ± 0.0015% of full scale

Linearity Calibration Repeatability Software Filter (Std.) Dynamic Digital Filter (Opt.) multi-variable up to 64 seconds

Temperature Coefficient

Span/Zero Step Response Common Mode Rej. Normal Mode Rei.

± 2ppm/°C one conversion 100 db @ 60 Hz 100 db above 35Hz

0.3 µV per count

50 to 6400 msec

Environment

Operating Temperature Storage Temperature Humidity Voltage Power Parameter Storage EMI/RFI

-10 to 55°C (12 to 131°F) --20 to 85°C (-4 to 185°F) 5 to 90% rh, non-condensing 117/230 ± 15% 50/60 Hz 12 watts max EEPROM shielded from typical industrial interference

Enclosure

Dimensions

see outline dimensions - Figure 2-1

Internal Display/Operator Interface

High-Contrast LCD or Optional Vacuum Fluorescent Interface

2 columns of 20 characters each 4 'soft buttons'

Isolated Analog Output

oad) ax load)
ax iuau

Relay Outputs (optiona Closed Contact or Solid State	I) 28V ac/dc @ 0.4 amps (max.) 110/220 Vac @1.0 amp
Digital Inputs (optional) 12-24 Vdc Input or TTL Open of Logic '0' (Low) Logic '1' (High) Mechanical Relay Relay '0' Relay '1' BLH Digi-System Netwo Type Baud Data Format) Collector less than 5.0 Vdc, sink 3 mA (min) 10 to 28 Vdc closed (one side = digital common, the other side = input) open (input internally pulled up) Ork RS-485 half duplex (multi-drop) 9.6K, 28.8K, and 56.7k proprietary
Standard Simplex Data Type Baud Data Format (Selectable) ASCII	Output (Transmit Only) RS-485 simplex 1200 or 9600 7 data bits even parity stop bit
Terminal/Computer Inte Interface Type Baud Protocol ASCII	rface RS-485 half duplex 1200 or 9600 duplex command/response format 7 data bits even parity stop bit
Special Protocol (option Modbus	n al) RTU protocol - slave
Special Interface (option Allen Bradley Remote I/O	nal) represents 1/4 rack of discrete data also supports block transfer
Weight NEMA 4/4X	approx. 12.0 lb

1.4 DXp-40 Ordering Information

DXp-40 [M] – [C] – [P] – [S] – [O]

[M] Mounting

- NEMA 4 painted standard
- (2) NEMA 4X stainless steel
- (3) NEMA 7 & 9 EX Enclosures for Class I, II, DIV. 1, 2, Grp. B G
- (5) #2 with Polycarbonate Window and integral VFD display
- (8) #1 & FM/CSA approval (Class I II III, Div 2, Group ABCD FG)
- #2 & FM/CSA approval (Class I II III, Div 2, Group ABCD FG)
- (11) #9 with Polycarbonate Window and integral VFD display

[C] Communication

- (1) RS 485 Network
- (2) #1 and Terminal/Computer Interface, ASCII protocol
- (4) Allen Bradley Remote I/O (Note: RS-485 Deleted)
- (5) #1 and MODBUS™ RTU (may require RS-485 to RS-232 serial conversion)

[P]Process Output

(1) None

- (2) 0-10V/4-20 mA Analog (includes switchable filter)
 & 4 Inputs/Outputs With Dry Contact Relays (not available with FM approval)
- 0-10V/4-20 mA Analog (includes switchable filter)
 & 4 Inputs/Outputs With Solid State Relays

[S]Software

(7)	Standard Includes:
	Keypad Calibration
	Dynamic Digital Filtering
	On-Line Diagnostics
	Degrade Mode Software

[O]Calibration

Default Calibration

Accessories

```
 Conduit Fitting Kit (6 connectors) P/N 465231
 Cable Fitting Kit (6 connectors) P/N 465232
```

1.5 WARRANTY POLICY

BLH warrants the products covered hereby to be free from defects in material and workmanship. BLH's liability under this guarantee shall be limited to repairing or furnishing parts to replace, f.o.b. point- of manufacture, any parts which, within three (3) years from date of shipment of said product(s) from BLH's plant, fail be-cause of defective workmanship or material performed or furnished by BLH. As a condition hereof, such defects must be brought to BLH's attention for verification when first discovered, and the material or parts alleged to be defective shall be returned to BLH if requested. BLH shall not be liable for transportation or installation charges, for expenses of Buyer for repairs or replacements or for any damages from delay or loss of use for other indirect or consequential damages of any kind. BLH may use improved designs of the parts to be replaced. This guarantee shall not apply to any material which shall have been repaired or altered outside of BLH's plant in any way, so as in BLH's judgment, to affect its strength, performance, or reliability, or to any defect due in any part to misuse, negligence, accident or any cause other than normal and reasonable use, nor shall it apply beyond their normal span of life to any materials whose normal span of life is shorter than the applicable period stated herein. In consideration of the forgoing guarantees, all implied warranties are waived by the Buyer, BLH does not guarantee quality of material or parts specified or furnished by Buyer, or by other parties designated by buyer, if not manufactured by BLH. If any modifications or repairs are made to this equipment without prior factory approval, the above warranty can become null and void.

1.6 FIELD ENGINEERING

Improper DXp-40 installation or usage may result in system damage. Please follow instructions carefully. BLH will not accept any liability for faulty installation and/or misuse of this product. Authorized BLH Field Service Engineers are available around the world to install DXp-40 transmitters and/or train factory personnel to do so. The field service department at BLH is the most important tool to assure the best performance from your application. Field service phone numbers are listed below. Call (Factory Number) (781) 298-2200 Ask for Field Service

In Canada, Call (416) 251-2554 or (800) 567-6098 Toll Free

Notice: BLH makes no representation or warranties of any kind whatsoever with respect to the contents hereof and specifically disclaims any implied warranties or merchantability or fitness for any particular purpose. BLH shall not be held liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this publication or its contents.

BLH reserves the right to revise this manual at any time and to make changes in the con-tents hereof without obligation to notify any person of such revision or changes.

SECTION 2. Installation

2.1 INTRODUCTION

2.1.1 General

The DXp-40 is designed to be installed within the length of the load cell(s) cable which is normally 35 ft or less. Standard NEMA 4 or optional NEMA 4X en-closures are suitable for outdoor or washdown type environments. Both enclosures are provided with pre-punched holes for installing conduit or cable fittings and holes for mounting to a bracket or wall.

2.2 MOUNTING

The NEMA 4 and NEMA 4X enclosures are equipped with four pre-punched holes for mounting to a wall or bracket. A U-bolt can be used for mounting to a pipe support. The instrument should be installed in a vibration-free location within the normal length of the load cell cables. If conduit is used, drains should be provided to reduce the possibility of condensate entering the enclosure. Outline dimensions for the standard DXp-40 transmitter are presented in Figure 2-1.

Figure 2-1. DXp-40 Outline Dimensions.

Figure 2-2. Load Cell Connections.

2.3 ELECTRICAL

2.3.1 Transducer Inputs

Up to four load cells, one per channel can be connected to the DXp-40. Connect individual load cells directly to the circuit board connectors as shown in Figure 2-2. Excitation and signal connection locations are clearly marked according to function and standard color code. When remote sensing is not used (most cases), connect -SENSE to -EXCITATION and +SENSE to +EXCITATION. Note: If tension load cells are used, signal leads (red/white) must be reversed.

If a deadweight or substitution method of calibration is being used, the load cell cable can be shortened as required. The leads should be re-tinned before the final connection is made.

NOTE: When tension or universal type load cells are used, it may be necessary to reverse the polarity of the signal leads to obtain a positive signal input to the DXp.

NOTE: All system load cells must be connected during power-up in order to turn on all A/D channel inputs.

2.3.2 Serial Communication

A terminal connector is provided for RS-485 wire connections (Figure 2-3). Multiple DXp transmitters, networked together, are wired in a parallel configuration with a termination jumper installed on the last instrument. A pair of twisted wires (20-24 gauge, Belden #9501) is all that is required for interconnection. Communication lines should not be run near ac voltage power lines.

2.3.3 Mains (AC) Power (Figure 2-4)

A screw terminal is provided for permanent transmitter power connection. All units are shipped from the factory configured for 115 VAC operation. To select 230 VAC operation, change SW1 on the base or 'mother' board (see Figure 2-4) to the 230V setting. The unit will operate within specification at 50 or 60 Hz. Before connecting power to the unit, verify that the proper power selection has been made. The two position terminal block is equipped with a clear plastic cover to prevent operator injury. Cable can be either solid or stranded 12 or 14 gage with a ground conductor.

The transmitter is protected with a 1/4 amp slow blow fuse, located adjacent to the mains terminal block. If the fuse opens, replace it with the same type and current rating.

Figure 2-3. Serial Output Connections (Shaded).

Figure 2-4. AC Power Connections and Fuse.

2.3.4 Auxiliary 110 Ports

The auxiliary I/O port connections are factory test ports and are not useful to an operator.

2.3.5 Optional Analog Output

With the analog option installed, a three position terminal connector is provided for 4-20 mA, 0-10 V, and common connections (Figure 2-5). As with serial communication, the wiring should be routed away from ac power lines and other sources of EMI. The current output is essentially immune to noise and can be transmitted long distances. The voltage output is susceptible to EMI/RFI and should be used only for short distances. Always use twisted pair, shielded cable.

2.3.6 Optional Remote Inputs

If the remote input option is installed, the gross/net, zero, tare, and filter functions can be activated using external push button switches or TTL signals. When using an external TTL device, 5 VDC must be supplied and the device TTL common connected to the DXp-40 common connector. Inputs are designated as digital (DIG) common and 1-4 (Figure 2-5) and function as defined in the following table:

Input #	Open	Closed
DIG IN 1	Gross	Net
DIG IN 2		Zero
DIG IN 3		Tare
DIG IN 4	Filter 1	Filter 2

2.3.7 Optional Discrete Outputs

Units equipped with optional outputs have either four, dry contact, 28 volt (ac/dc) relays capable of handling 0.4 amps each or four, solid state, 117 VAC triac relays capable of handling 1 amp each. Customer ordering specifications (paragraph 1.4, topic `P') determine which type of relays are installed. Figure 2-5 shows the relay output wiring configuration. Paragraph 8.2 describes how the relays can be configured for different uses, depending upon the system application. Units are factory set in the normally open configuration.

NOTE: Discrete outputs are not available with mounting options 8 and 9 (see paragraph 1.4).

Figure 2-5. Optional I/O Connections

Analog Outputs	Remote Inputs	Relay Outputs			
COM 4-20MA 0-15V	DIG COM DIG IN 4 DIG IN 3 DIG IN 1	RLY 4 C RLY 4 ND RLY 3 C RLY 3 NO RLY 2 C RLY 2 NO RLY 1 C RLY 1 NO			
990	66000	00000ee			

SECTION 3. Calibration

3.1 GENERAL

Calibration is the fourth step in the DXp-40 parameter entry menu (Figure 3-1). Setup and calibration is accomplished easily using the internal LCD display and its three switches.

Complete calibration is accomplished in two phases, scale setup and either millivolt per volt or deadload calibration as shown in Figure 3-2. Use the full calibration flow diagram insert on the following page for guidance throughout the calibration procedure.

3.2 SETUP PARAMETERS

Setup establishes scale operating parameters such as system capacity, decimal point location, display units (pounds, kilograms, tons), total number of load cells, and others. To enter or alter operating parameters, select YES for 'MODIFY SCALE SETUP?' in Figure 3-2 and proceed to Figure 3-3.

3.2.1 Calibration Type

DXp-40 transmitters offer two types of system calibration, digital or deadload. In the past, weigh systems could only be deadload calibrated by placing known quantities of dead weight upon the scale to establish voltage to weight equivalent points. In the DXp-40, however, since each load cell has its own ND converter with embedded mV/V calibration, calibration can be accomplished simply by entering known mV/V weight values from a load cell calibration sheet. Choose the calibration type to be performed.

3.2.2 Number of Load Cells

Enter the number of system load cells from 1 to 4.

3.2.3 Display Units

Designate the desired display unit type by entering LB (pounds), KG (kilograms), or TN (tons).

3.2.4 Decimal Point Location

Position the decimal point as desired for weight display and serial printouts.

3.2.5 Capacity

Enter the system total capacity value. A capacity of 10,000 will be 10.000, 100.00, 1000.0, or 10,000 relative to decimal point selection.

3.2.6 Count By

Define the count value of each display increment by selecting 1, 2, 5, 'or 10 (note that decimals apply).

3.2.7 Zero Band

• Choose a zero bandwidth (gross weight zero function) of 2%, 20%, or 100% of system capacity. If OFF is selected, the gross weight ZERO function is not avail-able.

Main Menu (Accessed from Operation Mode)

	+100000 LB GROSS	LIVE WEIGHT DISPLAY, GROSS MODE
	ND G/N ZEBO	MENU MENU Advance To Digital Filter Setup Unless Error
MENU	SWI SW2 SW3	SW1 IND Display individual Load Cells
- 8		SW3 ZERO _ Push To Zero
		YES to enter/alter Digital Filtering Parameters
	YES NO EXIT	MENU MENU Advance To 'Cell Diagnostics'
MOM 1	SWI SW2 SWA	SW1 YES _ Enter Or After Filter Parameters SW2 NO _ Go To Cal Discussion
		SW3 EXIT _ Return To Live Operation
		CHECK: Load Shift, Zero Shift, Drift, Noise, Rew Date
	VES NO FYIT	MENU Advance To 'Do Calibration'
		SWI YES _ Perform Diagnostic Evaluation
		SW3 EXIT Return To Live Operation
		····
		*
	DO CALIBRATION?	YES to Perform System Calibration
	YES NO EXIT	MENU MENU Return To Live Operation SW1 VES
MENU	<u>5W1 5W2 5W3</u>	SW2 NO _ Return To Live Operation
100		SW3 EXIT Return To Live Operation
1	ANALOG OLITELIT SETUDA	YES To Enter/Alter Analog Output Parameters
	YES NO EXIT	MENU MENU Advance To "Setpoints?"
MENU	SW1 9//2 5//3	SW1 YES Enter/Alter Analog Output Parameters SW2 NO
		SW3 EXIT _ Return To Live Operation
		YES To Configure Relay Output Functions
	YES NO EXIT	MENU MENU Advance To MODBUS Interface?
NENI	SW1 SW2 SW3	SW1 YES Configure Set Point Relay Outputs
1		SW3 EXIT Return To Live Operation
	MODBUS INTERFACE?	YES To Configure MODBUS Communication Parameters
	YES NO EXIT	MENU MENU Advance To 'DXP40 Version Information'
MENU	SW1 SW2 SH3	SW2 NO _ Go To 'DXP40 Version Information'
		SW3 EXIT Return To Live Operation
	BIH DXP40 VER 10	View Software Version# and Option Status
	OPTIONS -1-2-1	MENU MENU Return To Live Operation
MENL		
13.		`
	#	• Switch Pressed

Figure 3-1. DXp-40 Main Menu Showing Calibration Display.

MBN	YES SW1	SW2	SW3	MENU MENU _ Return to Live Operation SW1 YES _ Enter or Atter Calibration Parameters SW2 NO _ Return to Live Operation SW3 EXIT _ Return to Live Operation
MENU	MODIFY : YES	SCALE S NO SW2	SET UP? EXIT	YES To Enter/Alter Capacity, Decimal Point, Countby, Zero Band, mV/V or Deadload Cal, # of Celis, Units MENU MENU _ Back Up To Previous Display SW1 YES _ Enter System Parameters - Figure 3-3 SW2 NO _ Step To mV/V or Deadload Cal SW3 EXIT _ Return To Do Calbration?
lf m¥/¥ Typo	Calibration is	Selected (O	ptional)	
	ENTER m YES	NO NO		YES To Perform mV/V Calibration MENU MENU – BAck Up To Previous Display SW1 YES – Perform mV/V Calibration - Figure 3-5 SW2 NO – Step To Acquire Deadload? SW3 EXIT – Return To Do Calibration?
	ACQUIR YES		OAD? EXIT	YES To Acquire System Dead Weight Value MENU MENU - Back Up To Previous Display SW1 YES - Acquire Dead Load - Rigure 3-6 SW2 NO - Return To Do Calibration? SW3 EXIT - Return To Do Calibration?
If Deadload Ty	ype Calibration	i la Selecte	đ	
MENU			CAL? EXIT	YES to Perform Deactoad Type Calibration MENU MENU Back Up To Previous Diaplay SW1 YES Perform Deadload Calibration - Figure 3-7 SW2 NO Return To Do Calibration? SW3 EXIT Return To Do Calibration?
			11 15	* Switch Pressed

DO CALIBRATION?

7

Γ

YES to Perform System Calibration

Figure 3-2. DXp-40 Calibration Menu.

3-3

Modify Scale Set Up

	LISE MV/V CALEBRATION2	Select Calibration Type; mV/V or Deadload
	STEP MODEY EXT	MENU MENU _ Back Up To Previous Display
MENU	SWI SW2 SW3	SW1 STEP Step Forward To Corner Adjust
		SW3 EXIT Return To Modify Scale Setup?
		- ·
	CORNER AD UST + ON	Enable Or Disable Corner Adjust Feature
	STEP MODIFY EXIT	MENU MENU _ Back Up To Previous Display
MENU	SWI SW2 SW3	SWI STEP _ Step Forward To # Of Load Cells SW2 MODIEY English Or Disable (Op Offic Center Advect
		SW3 EXIT _ Return To Modify Scale Setup?
	-	
		Calcul Tabal Number of Carlos Landon K. A.
	LOAD CELLS = #	Select lotal number of System Load Cells 1-4 MENU MENU Back Up To Previous Display
	STEP MODIFY EXIT	SWI STEP Step Forward To Display Units
MENU	SW1 SW2 SW3	SW2 MODIFY Change Number Of Load Cells
		NOTE: MUST Start At Cell #1
	DISPLAY LINETS + LB	Choose Units Display Of LB, KG, TN, PVU
	STEP MODIFY EXIT	MENU MENU _ Back Up To Previous Display
MENU	5W1 8W2 8W3	SW2 MODIFY Change Display Units
		SW3 EXIT _ Return Modify Scale Setup?
		Select Desimal Paint Lassian
	DECIMAL PT = 000000	MENU MENU Reck in To Previoue Display
	STEP MODIFY EXIT	SW1 STEP _ Step Forward To Capacity
MENU	5W1 6W2 6W3	SW2 MODIFY- Add Decimal Point Or Change Location SW3 EXIT - Return To Modify Scale Set n2
		ene men a riblan to noully bears boupt
	CAPACITY = 000000	Enter Or Alter System Capacity Value
	STEP MODIFY EXIT	MENU MENU Back Up To Previous Display SW1 STEP
MENU	SW1 SW2 SW3	SW2 MODIFY Enter/Alter System Capacity Value
	5 9 19 5 4 9	SW3 EXIT Return To Modify Scale Setup?
		Channe Basis Conductions Of 4 D. E. 40 D. E. 40
	COUNT BY 1 LB	Chicket Scale Graduations Of .1, .2, .5, 10, 2.0, 5.0, 10.0
	STEP MODIFY FXIT	MENU MENU - Back Up To Previous Display
		any aler Step Forward to Zero Bend
MENU	SW1 SW2 SW3	SW2 MODIFY_ Select New Count By Value
	SW1 SW2 SW3	SWI STEP _ Step Forward to Zero Band SW2 MODIFY_ Select New Count By Value SW3 EXIT _ Return To Modify Scale Setup?
	SWI SW2 SW3	SWI STEP _ Step Forward to Zero Band SW2 MODIFY_ Select New Count By Value SW3 EXIT _ Return To Modify Scale Setup?
		SWI STEP - Step Forward to Zero Band SW2 MODIFY_ Select New Count By Value SW3 EXIT - Return To Modify Scale Setup? Select Zero Band Of 2%, 20%, 100%, OFF
	ZERO BAND = 2%	SW2 MODIFY_ Select New Count By Value SW3 EXIT _ Return To Modify Scale Setup? Select Zero Band Of 2%, 20%, 100%, OFF MENU MENU _ Back Up To Previous Display
	ZERO BAND = 2% STEP MODIFY EXIT	SWI STEP - Step Forward to Zero Band SW2 MODIFY_ Select New Count By Value SW3 EXIT - Return To Modify Scale Setup? Select Zero Band Of 2%, 20%, 100%, OFF MENU MENU - Back Up To Previous Display SW1 STEP - Return To Modify Scale Setup? SW2 MODIFY_ Select New Zero Band Percentage

3.3 DIGITAL CALIBRATION

3.3.1 Load Cell Calibration Data

Individual channels and embedded mV/V calibration-curves make it possible to calibrate a DXp-40 by simply entering mV/V equivalent force or weight values from a load cell calibration sheet (Figure 3-4). A cal sheet presents the load cell mV/V output reading for either 3 or 10 known weight values. The highest weight value recorded should match the rated capacity of the load cell. Note that there is also a 0 or no load mV/V output recorded. Each load cell must have its own cal sheet (match serial number on sheet to serial number on cell) in order to perform mV/V calibration. If cal sheets are not available, use deadload type calibration.

3.3.2 Entering mV/V Calibration Points

Following Figure 3-5 instructions, select a load cell and enter the zero balance (no load) mV/V

value. After zero balance is established, enter the load point pound and load point mV/V value for each test point on the calibration certificate. Repeat this procedure for each load cell before advancing to 'Acquire Dead-load?' (next paragraph). Note that load cells are numbered according to their channel connection position (Figure 2-2).

3.3.3 Acquire Deadload

After all mV/V load points are entered, a scale zero reference must be acquired. Deadload zero determines the weight or signal output at which the scale/system is in no load condition. Addition of any ingredient weight will be referenced from this point to produce accurate live weight readings. Following Figure 3-6 instructions, acquire the deadload value by either entering a known weight value for all scale/sys-tem components (manual) or letting the DXp-40 read and store the no load signal (live). When all cal sheet span points are entered and deadload acquired, mV/V calibration is complete.

Calibration Chart

Customer:	-1 17 - 1		P.O :	F046999M07	15
Capacity 10;0	90 ib 🐜 🛌 ,	. Туре	C3P1	Serial No.	40243
Mode Compre	ssion	Bridge A	Tes	st Report No.	C94-6000
Indicator N.	A.	Serial No.	N.A.		
Date Of Calibration	3/4/94		Ť	emperature :	71 F
Calibrated By:	M. Houton			Humidity :	49 %
Applied	Response	Response	Response		
Load	Run 1	Run 2	Run 3	-	
lbf	mv/V	mv/V	mv/V		
0	0.0000	0.0000	0.0000	Jun ?	Barlez
1,000	0.2997	0.2999	0.2999	0 0	0
2,000	0.5997	0.5999	0.5998		
3,000	0.8997	0.8998	0.8998		
4,000	1.1998	1.1998	1.1998		
5,000	1.5001	1.4998	1.4999		
6,000	1.8002	1.8002	1.8002		
7,000 8,000	2,1004	2.1004	2,1004		
6,000	2.4007	2.4000	2,4000		
10,000	3.0012	3.0012	3.0012		
5.000	1.5004	1 5003	1.5003		
0	0.0000	0.0000	0.0000		
Applied	Output	Ideal	Output	Output	Hysteresis
Load	Average	Output	Error	Error	Error
[lb]	mv/V	mv/V	mv/V	% FS	% FS
0	0.0000	0.0000	0.0000	.000%	
1,000	0.2998	0.3001	-0.0003	010%	
2,000	0.5998	0.6002	-0.0004	015%	
3,000	0.8998	0.9004	-0.0006	020%	
4,000	1.1998	1.2005	-0.0007	023%	
5,000	1.4999	1.5006	-0.0007	022%	
6,000	1.8002	1.8007	-0.0005	017%	
7,000	2.1004	2.1008	-0.0004	015%	
8,000	2.4008	2.4010	-0.0002	006%	
9,000	2.7009	2./011	-0.0002	007%	
10,000	3.0012	3.0012	0.0000		
5,000	1.5003	1.5006	-0.0003	009%	.013%
0	0.0000	0.0000	0.0000	.000%	.000%

Figure 3-4. Typical Load Cell Calibration Sheet.

Digital Calibration

Switch Preced

Figure 3-5. Millivolt per Volt Calibration Guide.

* Digital Type Calibration Must Be Performed Before Attempting Tare

Figure 3-6. Acquire Deadload (Used with mV/V Cal Only).

3.4 DEADLOAD TYPE CALIBRATION

Deadload calibration (Figure 3-7) uses known value 'true' weights to establish calibration span points. Often, only one true weight value is needed since water or other material can be substituted incrementally for that value.

3.4.1 Perform Corner Test (Sensitivity Adjust)

NOTE: Corner adjusting requires that dead weight equaling 15% (minimum) of scale capacity be loaded at each corner. Since applying/shifting this much dead weight is not practical for most tank based weigh systems, corner adjustment is usually performed only on platform scales.

NOTE: Corner testing is not required on systems using transducers with matched outputs or systems where the load distribution is not likely to change.

With multiple simultaneous ND conversion technology it is possible to 'balance' or corner adjust the system transducers. Corner adjustment ensures accurate weight readings even when the scale is loaded off center. Choose YES if corner adjustment is desired. Systems that do not experience load distribution changes typically do not require corner adjustment.

Corner testing optimizes scale performance by learning and compensating for the actual relationship between each transducer's output based upon varying load distribution. Perform corner testing by placing a known value weight on the scale/system directly above or as close as possible to each transducer as instructed in Figure 3-7. Position the weight above transducer #1 (channel 1) and acquire. Repeat the process for each subsequent transducer. After each transducer has 'felt' the weight, the DXp-40 will store the reaction pattern. This pattern becomes a reference for balancing live weight readings. Corner testing is ideal for systems/scales where ingredients may shift or loads move.

3.4.2 Acquire Zero

Acquire zero is the first step in deadload calibrating a weigh system. Acquire zero removes the weight value of system equipment (tank, platform, mixers, motors, etc.) and establishes a zero reference point. All live weight transactions will be referenced to this point. Remove any unessential equipment from the scale/system and follow instructions presented in Figure 3-7 (second page).

3.4.3 Span Point Entry

Once zero is established a span point (or points) must be entered to complete calibration (Figure 3-7 second page). The simplest form of deadload calibration consists of acquiring zero and entering one span point, preferably the full scale capacity value. To accommodate more sophisticated systems, the DXp-40 provides up to 10 span point entries. Weigh systems can be fully linearized, or tuned, by entering known live weight span points between zero and capacity. Enter span points from the lowest to the highest weight value; do not attempt to enter a point value lower than the previous entry. When deadloading to full capacity is impractical, the DXp-40 accurately interpolates all weight values between the last span point and capacity.

DO DEADLOAD CAL? YES to Perform Deadload Type Calibration

Figure 3-7. Deadload Calibration Entry Guide.

Deadload Type Calibration Flow Diagram (cont.)

• Switch Pressed

Figure 3-7. con't.

4.1 GENERAL

DXp-40 transmitters power up in the gross weight weighing mode. If no system errors are detected, the internal LCD display will show the gross weight value as depicted in Figure 4-1 (the unshaded portion). Note: For initial system power up units are factory pre-calibrated with default values. Calibration (SECTION 3), however, should be performed before attempting system operation.

Figure 4-2 presents the display panel switch functions for the operating mode. Switch 2 toggles the operating mode from gross to net or net to gross. Switch 3 performs push to zero (gross mode) or tare (net mode). Use switch 1 to view individual load cell data. When the DXp-40 is connected to a host terminal, computer, or an LCp-40 network control device, gross, net, zero, and tare functions can be performed remotely.

4.2 GROSS WEIGHT WEIGHING

In the gross mode, all of the live weight of the system is transmitted: Live weight does not include the dead weight of a vessel or other mechanical equipment that is factored out during calibration.

4.3 ZERO OPERATION

A new zero can be acquired to compensate for changes in the dead load of the system due to heel build-up etc. Acquiring a new zero reference value does not affect the slope of the calibrator. The zero function in the DXp-40 can be configured for OFF, 2%, 20%, or 100% of system capacity (see Setup Parameters in SECTION VI Calibration). Zero may be acquired only if the system is not in motion and the zero band limit has not been exceeded (when ZERO is visible on the display).

4.4 NET WEIGHT WEIGHING

Net weight weighing is used when the operator wants to reset zero to compensate for the addition of live weight, or a container, before adding a specific amount of material. Tare is used to establish a zero reference in net mode.

4.5 TARE OPERATION

With the DXp-40 in net weighing mode, the tare operation resets the output to zero. Taring allows the operator to achieve a new zero reference before addition of each ingredient so that errors do not become cumulative.

4.6 VIEW INDIVIDUAL CELL DATA

Pressing switch 1 'IND' (Figure 4-2) allows the operator to view Individual load cell parameters in weight units, millivolts, or percent of total load. Note that live weight processing (including serial data transactions) continues during individual cell displays.

4.7 ERROR DETECTION AND CORRECTION

Should an error condition occur during system operation, a flashing capital 'E' will appear next to the weight/status information on the display (Figure 4-3). If the system is overloaded, (total or individual cell capacity exceeded) the word 'OVER' also will appear flashing beneath the flashing `E'. Errors other than overload fall into 4 categories; load shift, zero shift, cell drift, and cell noise errors. To evaluate and correct system errors, enter the diagnostic mode as shown in Figure 4-3 and proceed to SECTION V (Cell Diagnostics).

Main Menu (Accessed from Operation Mode)

	+100000 LB GROSS	LIVE WEIGHT DISPLAY, GROSS MODE
	ND G/N* ZERO	MENU MENU Advance To Digital Filter Setup Unless Error
MENU	SW1 SW2 SW3	SW1 IND _ Dispay individual Load Calls SW2 NET _ Switch To Nat Mode
		SW3 ZERO Push To Zaro
	DIGITAL FILTER SETUP	YES to enter/alter Digital Filtering Parameters
	YES NO EXIT	MENU MENU Advance To "Cell Diagnostics" SW1 YES Enter Or Alter Filter Parameters
EL.	<u>3%1 3%2 3%3</u>	SW2 NO _ Go To Cel Diagnostics
_		
		CUECK-1 and Shift Zoro Shift Drift Mains Dow Date
		MENU Advance To 'Do Calibration'
		SW1 YES _ Perform Disgnostic Evaluation
		SW2_NU Go to be calibration SW3_EXIT_ Return To Live Operation
	DO CALIBRATION?	YES to Perform System Calibration
	TES NO EXI	SW1 YES Enter Or Alter Calabration Settings
		SWZ NO _ Return To Live Operation SW3 EXXT _ Return To Live Operation
		VES To Enter/Alter Analog Cutrust Decomptore
	ANALOG OUTPUT SETUP?	MENU MENU _ Advance To Setooints?
upu -		SW1 YES _ Enter/Alter Analog Output Parameters
		SW3 EXIT Return To Live Operation
	SETPONTS ?	YES To Configure Relay Output Functions
	YES NO EXIT	MENU MENU Advance To MODBUS Interface?
MENU	<u>ຼຸສທງ ສທຊ ສທຊ</u>	SW2 NO Go To MODBUS Interface?
		SW3 EXIT _ Return To Live Operation
	LIGODID BUTTELOTO	VES To Configure MODRUS Communication Personatore
	YES NO EXT	MENU MENU Advance To "DXP40 Version Information"
MENU	SW1 SW2 SW3	SW1 YES _ Configure MODBUS Interface SW2 NO _ Go To "WRMD Version Information"
		SW3 EXIT Return To Live Operation
	BLH DXP40 VER 10	View Software Version# and Option Status
	OPTIONS -1-2-1	MENU MENU _ Return To Live Operation
New		
	_	
		Setter Present

Figure 4-1. DXp-40 Main Menu - Power Up In Gross Mode

DXp-40 Operating Mode Switch Selections

	+100000 LB GROSS	Live Weight Display, Gross Mode
	ND G/N ZERO	MENU MENU Choose Main Menu - Figure 4-1 SW1 IND Display Individual Load Cetis SW2 NET Switch To Net Mode SW3 ZERO Push To Zero (no display if out of 2 band range; MOTION if in motion)
	+100000 LB GROSS ND G/N TARE	Live Weight Display, Net Mode MENU MENU Choose Main Menu - Figure 4-1 SW1 IND Display Individual Load Cells SW2 GROSSSwitch To Gross Mode SW3 TARE Tare Net Weight (MOTION if in motik
MENU	+100000 LB GROSS ND G/N ZERO SW1 SW2 SW3	Look At Individual Cell Data MENU MENU Choose Main Menu - Figure 4-1 SW1 IND Display individual Load Cells
MENU	UNITS TO DISPLAY LB MV %LOAD	Select Load Cell Display Units MENU MENU Go Back To Previous Display SW1 LB Display Weight Units SW2 MV Display Millivolt Signal SW3 %LOADDisplay % Of Load Upon Cell
	1+ 1000 4+ 1000 2+ 1000 3+ 1.000 SW1 SW2 SW1 SW2	Individual Call Display In Weight Units MENU – Units To Display SW1 – Exit SW2 – Millivolts SW3 – Show % Of Load
MENU	1+ 15.000 4+ 15.000 2+ 15.000 3+ 15.000 swi sw2 sws	Individual Ĉeli Display In Milivoits MENU Units to display SW1 Units SW2 Exit SW3 Show % Of Load
MÊNU	1+ 25.000% 4+ 25.000% 2+ 25.000% 3+ 25.000%	Individual Cell Display in % Of Load MENU Units To Display SW1 Units SW2 Milivoits SW3 Exit
	21 12	Switch Pressed

Figure 4-2. Switch Functions in the Operating Mode.

Figure 4-3. Error Detection & Correction Switch Selections.

SECTION 5. Dynamic Digital Filters

5.1 GENERAL

Digital filtering (including motion) constitutes the first set of parameter entries in the main menu (Figure 5-1, unshaded). Digital filtering combines moving averaging (fitter) with response and noise bands to eliminate vibration and agitation noise from dynamic process weighing systems. Filtering removes unwanted, mechanically induced fluctuations from the weight signal while maintaining rapid response to genuine live weight changes.

5.2 FILTER PARAMETERS

Each filter component has adjustable parameters (Figure 5-2) so that every weigh system can be 'tuned' to its own unique environment.

NOTE: Using diagnostic software, it is recommended that the statistically calculated noise characteristic parameters such as standard deviation, etc., be used as a basis for initial filter set-up.

5.3 DYNAMIC FILTER

Dynamic Digital Filter software is an advanced series of filtering algorithms for attenuating random weigh signal noise. Using the prefiltered signal from the standard filter, the Dynamic Filter applies a two step approach (Noise Band and Response Band) to adaptively reduce the noise components of the weigh signal without adversely affecting system dynamics (Figure 5-3).The resulting real time weigh signal provides stable weight information for high resolution indication and precise control over a broad spectrum of mechanical and electrical disturbances.

5.3.1 Band Filter

Band Filter is an exponential software filter which is applied only to signal fluctuations which fall within the Noise and Response band limits. The Band Filter is fully applied to signal fluctuations which fall within the Noise Band. For signal changes which fall outside the Noise Band but within the Response Band, proprietary statistical analysis algorithms are applied to the Band Filter resulting in progressively lower dampening proportional to time within the Response Band and direction of signal change. For signal changes which fall outside both Noise and Response bands, the Band Filter is canceled. This allows heavy dampening of system noise while maintaining quick response to changes in weight signals. The Band Filter length* is selectable at 0.5, 1, 2, 4, 8, 16, 32, and 64 seconds. The equivalent frequency attenuation is as follows:

Filter length (sec) Frequency attenuation (Hz)

0.5	10
1	5
2	2.5
4	125
8	0.63
16	0.31
32	0.16
64	0.08

*Filter length is the time for an instant change to be fully reflected at the output.

5.3.2 Noise Band

Noise band is the + and - limit of the amplitude fluctuations in weigh signal due to external electrical or mechanical influences. For changes in signal amplitude equal to or less than the Noise Band limit, the Band Filter is fully applied for maximum dampening. In many applications, the standard deviation, determined by the Noise Test (paragraph 6.2.4), can be used to establish the value of the Noise Band. Under the Noise Teat menu, view the standard deviation without any filtering applied. For 68% attenuation (1 sigma filter), select the largest value and round it up to an enterable value for the Noise Band

For 99% attenuation (3 sigma filter), multiply the largest standard deviation value by 3 and round it up to an enterable value for the Noise Band. Noise Band amplitude selections are from 0 (off) to 250 display counts (display resolution).

Main Menu (Accessed from Operation Mode)

	+100000 LB GROSS ND G/N ZERO SW1 SW2 SW3	LIVE WEIGHT DISPLAY, GROSS MODE MENU MENU - Advance To Digital Filter Setup Uniess Error SW1 IND - Display Individual Load Cells SW2 NET - Switch To Net Mode SW3 ZERO - Push To Zero
	DIGITAL FILTER SETUP YES NO EXIT	YES to enter/alter Digital Filtering Parameters MENU MENU Advance To 'Cell Diagnostics' SW1 YES Enter Or Alter Filter Parameters SW2 NO Go To Cell Diagnostics SW3 EXIT Return To Live Operation
	CELL DIAGNOSTICS YES NO EXIT	CHECK: Load Shift, Zero Shift, Drift, Noise, Raw Data MENU MENU - Advance To 'Do Calbration' SWI YES - Perform Diagnostic Evaluation SW2 NO - Go To Do Calbration SW3 EXIT - Return To Live Operation
	DO CALIBRATION? YES NO EXIT	YES to Perform System Calibration MENU MENU Return To Live Operation SW1 YES Enter Or Alter Calabration Settings SW2 NO Return To Live Operation SW3 EXIT Return To Live Operation
	ANALOG OUTPUT SETUP? YES NO EXIT	YES To Enter/Alter Analog Output Parameters MENU MENU Advance To 'Setpoints?' SW1 YES Enter/Alter Analog Output Parameters SW2 NO Go To Seypoints? SW3 EXIT Return To Live Operation
	SETPOINTS ? YES NO EXIT	YES To Configure Relay Output Functions MENU MENU Advance To MODBUS Interface? SW1 YES Configure Sof Point Relay Outputs SW2 NO Go To MODBUS Interface? SW3 EXIT Return To Live Operation
MENU	MODBUS INTERFACE? YES NO EXIT	YES To Configure MODBUS Communication Parameters MENU MENU Advance To '0XP40 Version Information' SW1 YES Configure MODBUS Interface SW2 NO Go To '0XP40 Version Information' SW3 EXIT Return To Live Operation
	BLH DXP40 VER 10 OPTIONS -1-2-1	View Software Version≢ and Option Status MENU MENU Return To Live Operation
	a a traditional de la constante	

Figure 5-1. Main Menu Digital Filter Selection.

Digital Filtering Setup				
Kent	FILTER = #1 STEP MODIFY EXIT SW1 SM2 SW3	View Or Modify Filters MENU MENU Return To Digital Filter Setup SWI STEP - Step To Next Filter SW2 MODIFY. Modify Selected Filter Parameters SW3 EXIT - Rturn To Digital Filter Setup		
MENU	FILTER = 50 MSEC STEP MODIFY EXIT	View/Modify Filter Length Selection (msec) Choose: 50, 100, 200, 400, 800, 1600, 3200, 6400 MENU MENU – Back Up To Previous Display SW1 STEP – Advance To Band Filter Selection SW2 MODIFY. Modify Filter Time Length SW3 EXIT – Return To Filter # Selection		
Optional MBNU	BAND FILT = 4 SECS STEP MODIFY EXIT	View/Modify Band Averaging Selection Choose 0.5, 1, 2, 4, 8, 16, 32, Or 64 Seconds MENU MENU Back Up To Previous Display SW1 STEP Advance To Noise Band Setup SW2 MODIFY. Change Band Averaging Selection SW3 EXIT Return To Filter # Selection?		
Optional Menu	NOISE BAND = 2 STEP MODIFY EXIT	View/Modify Noise Band Selection (Counts) Choose: 0 - 250 Display Counts MENU MENU _ Back Up To Previous Display SW1 STEP _ Advance To Response Setup SW2 MODIFY. Select New Noise Band Count Range SW3 EXIT _ Return To Filter # Selection		
Optional Menu	RESPONSE = 4 STEP MODIFY EXIT SWA SW2 SW3 SWE C	View/Modify Response Band Selection (counts) Choose: 0 - 250 Display Counts MENU MENU _ Back Up To Previous Display SW1 STEP _ Advance To Motion Band Setup SW2 MODIFY. Modify Response Time Length SW3 EXIT _ Return To Filter # Selection		
MENU	MOTION BAND * 3 STEP MODIFY EXIT SW1 SW2 SW3	View/Modify Motion Detection Band Selection Choose: OFF, 1, 2, 3, 5, 10, 20, Or 50 Display Counts MENU MENU Back Up To Previous Display SW1 STEP Advance To Noise Band Setup SW2 MODIFY. Modify Filter Time Length SW3 EXIT Return To Filter # Selection		
MENU	MOTION TIMER = 1 SEC STEP MODIFY EXIT	View/Modify Motion Time Selection (sec) Choose: Time "Window" Of .5, 1, 2, 3 Seconds MENU MENU Back Up To Previous Display SW1 STEP Return To Digital Filter Selup? SW2 MODIFY. Modify Motion Detection Time Period SW3 EXIT Return To Filter # Selection = Swich Pressed		

Distant City 0-4

Figure 5-2. Digital Filter and Motion Setup.

Figure 5-3. Graphical Operation Example.

5.3.3 Response Band

Response band is ne + and - limit in terms of the amplitude of changes in weight signal outside the Noise Band limit. Response allows quick response to small changes in weigh signals outside the Noise Band but within the Response Band. For changes in signal amplitude equal to or less than the Response Band limit, the Band Filter is applied with progressively lower dampening effect to allow responsive changes in weigh signal. Response Band amplitude selections are from 0 (off) to 250 display counts (display resolution). It is recommended that the Noise Band setting be multiplied by 1, 2, 3, or 4 to get the Response Band setting. With the vessel in a steady state, set the Noise Band according to the standard deviation value. With the Response Band set to zero any spikes that fall outside the Noise Band will cause the displayed or transmitted weight to jitter. Increase the Response Band setting until the jitter disappears.

The two bands work together to separate system noise from true change in weigh signal achieving higher accuracy and more dependable data for control purposes.

5.3.4 Default Parameters

All DXp-40 transmitters (even those without the dynamic filter) are shipped with these default parameters: band filter = 32 seconds, noise band = 1, and response band = 4.

5.4 MOTION DETECTION (Standard)

Motion detection parameters are -entered along with filtering parameters (Figure 5-2). Motion

simply deter-mines when the system is active and when it is not. Tare and push to zero functions should not (and cannot if motion is selected) be implemented when the system is in motion. Motion can be configured for bandwidth of 1, 2, 3, 5, 10, 20, or 50 counts, or turned OFF. Once a band is selected, a time length (window) also must be established for the band. Motion must occur for the designated time interval before the system acknowledges an 'in motion' condition.

The motion timer is the time the system remains in an "in motion" condition after returning to a "not in motion" condition.

5.5 OPTIONAL SECOND FILTER

If the remote input option (paragraph 2.3.6) is installed, two sets of filtering parameters may be entered. Dual filters provide optimal control for systems with changing process dynamics. With the display reading 'DIGITAL FILTER SETUP?', press YES for filter 1, and press YES again for filter 2. Enter parameters for both filters as previously described. Filter selection is accomplished using remote digital input number 4. When input number 4 (DIG 4) is low (grounded), filter 2 is selected; high selects filter 1.

SECTION 6. On-Line Load Cell Diagnostics

6.1 GENERAL

The next step in the DXp-40 main menu is diagnostic error analysis and parameter entry (Figure 6-1). The unique quad A/D converter design makes it possible to diagnose system errors down to the exact load cell. Each load cell is continually checked for open circuit/wiring, zero shifts, drift, and overload. DXp-40 diagnostics also detect system malfunctions such as structure shifts, impact shock loads, and ingredient build up problems (heel checks).

Figure 6-2 provides an overall flow diagram for all diagnostic functions. Once an error is detected, the display shows a flashing 'E' while the serial output transmits the error code to the host computer. Also, a discrete relay output (optional) can be configured for error detection activation. Flow diagrams (Figure 6-3) show how to pinpoint the faulty cell(s) and change error condition parameters, if desired.

6.2 DIAGNOSTIC TESTS

Four of the five tests, load shift, zero shift, drift (when activated), and noise test, are evaluated and updated every 256 conversions (12 seconds). Overload is checked and updated every conversion (50 msec).

Flow diagrams (Figure 6-3) provided for each test show how to distinguish the cell/system fault and change parameters if desired.
Main Menu (Accessed from Operation Mode)

	+100000 LB GBOSS	LIVE WEIGHT DISPLAY, GROSS MODE
	ND G/N ZERO	MENU MENU Advance To Digital Filter Setup Unless Error
	SW0 5042 5043	SW1 ND Display individual Load Cells
		SW2 MELL SWITCH TO NET MODE SW3 ZERO _ Push To Zero
	DIGITAL FILTER SETUP	YES to enterraner Digital Fittering Parameters
,	YES NO EXIT	SW1 YES Enter Or Alter Filter Parameters
MENU	<u>SW2 SW3</u>	SW2 NO _ Go To Cell Diagnostics
		SW3 EXIT Return To Live Operation
	CELL DIAGNOSTICS	CHECK: Load Shift, Zero Shift, Drift, Noise, Raw Data
	YES NO EXIT	MENU MENU Advance To 'Do Calibration'
		SW1 YES Perform Diagnostic Evaluation
		SW3 EXIT _ Return To Live Operation
	DO CALERATION	YES to Perform System Calibration
	YES NO EXT	MENU MENU _ Return To Live Operation
		SW1 YES Enter Or Alter Calabration Settings
		SW2 NO _ Hearn to Live Operation SW3 EXIT _ Return To Live Operation
	ANALOG OUTPUT SETUP?	YES To Enter/Alter Analog Output Parameters
	YES NO EXIT	MENU MENU Advance To "Setpoints?"
MENU	SW1 SW2 SW3	SW2 NO _ Go To Seypoints?
		SW3 EXIT Return To Live Operation
	OCTRONITIO 0	YES To Configure Relay Output Functions
	VES NO EVIT	MENU MENU Advance To MODBUS Interface?
		SWI YES _ Configure Set Point Relay Outputs
		SW2 NO Go To MODEUS Interface? SW3 EXT Baturn To Live Operation
		VES To Configure MODBUS Communication Parameters
	MODBUS INTERFACE?	MENT MENT Advance To "DYPAD Varian Information"
	TES NO EAT	SWI YES Configure MODEUS Interface
	<u>SW1 SW2 SW3</u>	SW2 NO Go To 'DXP40 Version Information'
		and EALL HOURS IN LVG Operation
	BLH DXP40 VER 10	View Software Version# and Option Status
	OPTIONS -1-2-1	MENU MENU Return To Live Operation
MENU		

Figure 6-1. Diagnostic Error Evaluation Main Menu

Figure 6-2. DXp-40 Diagnostic Routines.

Load Cell Diagnostics Main Menu

	CELL DIAGNOSTICS	CHECK: Load Shift, Zero Shift, Drift, Noise, Overload MENI MENI Advance To Do Calibration
	SW1 SW2 SW3	SW1 YES _ Perform Diagnostic Evaluation SW2 NO _ Go To Do Calibration SW3 EXIT _ Return To Live Operation
	LOAD SHIFT & DISPLAY YES NO EXIT	YES To Evaluate Load Shift Error MENU MENU Return To Previous Display SW1 YES Figure 5-4 - Evaluate Shift Error(s) SW2 NO Step To Zero Shift & Display SW3 EXIT Return To Cell Disgnostics
	ZERO SHIFT & DISPLAY YES NO EXIT	YES To Evaluate Zero Shift Error MENU MENU Return To Previous Display SW1 YES Reture 6-5 - Evaluate Zero Shift Error(s) SW2 NO Step To Drift Test & Display SW3 EXIT Return To Cet Diagnostics
	DRIFT TEST & DISPLAY YES NO EXIT	YES To Evaluate Drift Error MENU MENU Return To Previous Display SW1 YES Figure 6-6 - Evaluate Drift Error(s) SW2 NO Srep To Noise Test & Display SW3 EXIT Return To Cell Diagnostics
	NOISE TEST & DISPLAY YES NO EXIT	YES To Evaluate Noise Error MENU MENU – Return To Previous Display SW1 YES – Figure 6-7 - Evaluate Noise Error(s) SW2 NO – Step To Cell Overload Limits SW3 EXIT – Return To Cell Diagnostics
MENU	CELL OVERLOAD LIMITS YES NO EXIT	YES To Check Load Cell(s) Overload Condition MENU MENU Return To Previous Display SW1 YES Figure 6-8 - Evaluate Overload Error(s) SW2 NO Step To Recall Values SW3 EXIT Return To Cell Diagnostics
MENU	RECALL VALUES? YES NO EXIT	YES To View Zero, Tare, Deadload, Or Cell Balance MENU MENU – Return To Previous Display SW1 YES – Figure 6-9 – Zero, Tare, Deadload, Balance SW2 NO – Go To Degrade Setup? SW3 EXIT – Return To Cell Diagnostics
	DEGRADE SETUP? YES NO EXIT	YES To Acquire Reference or Modity Cell Enable MENU MENU Return To Previous Display SW1 YES Figure 6-10 - Perform Degrade Setup SW2 NO Go To Cell Diagnostics SW3 EXIT Return To Cell Diagnostics
	SELECT INPUT ENABLES YES NO EXIT	YES To Change Remote Input Enable Status MENU MENU – Return To Previous Display SW1 YES – Figure 6-11 - Enable/Disable Remote Inputs SW2 NO – Go To Cell Diagnostics SW3 EXIT – Return To Cell Diagnostics
		Switch Pressed

Figure 6-3. Diagnostic Error Evaluation Main Menu.

6.2.1 Load Shift

A load shift error indicates that system equipment or vessel contents have shifted so as to place a disproportional amount of weight on a single cell. This test does not apply to initial load alterations during installation and calibration. Load. shift - testing detects• significant load changes in an operational weigh system. Follow guidelines in Figure 6-4 to determine which cell(s) is experiencing the shift error.

Load shifts can be caused by many things, among a few are: heel build up on one side of a tank, support structure changes introducing more force from connected pipes or process equipment, excessive deflection of a support leg, or faulty signal from the load cell.

Check the system structure above that cell for evidence of weight shift. If physical evidence does not point to a structural or content error, see if the cell has failed any of the other diagnostic tests.

6.2.2 Zero Shift

Zero shift testing identifies a toad cell(s) that has shifted from its original calibration zero reference point. The diagnostic zero shift limit entry is DIFFER¬ENT from the 2%, 20%, 100%, or OFF calibration ZERO band entry. Zero' shift testing .is-applied, to - each load cell, whereas the zero band concerns only the total system weight. Follow the flow diagram in Figure 6-5 to view the zero shift value for each cell and/or alter the zero shift limit. Zero shift test failures typically result in load cells that have been damaged by overloading or electrical leak-age. Either of these factors can cause a permanent shift in a cell's zero reference. If a cell fails the zero shift test, check to see if the overload peak has exceeded acceptable tolerance levels. Note that the zero shift test is performed only when the 'zero' function is activated.

6.2.3 Drift Test

The drift test detects a load cell output that is changing beyond acceptable tolerance levels. When the system stabilizes, after a period of weight activity, the processor waits one minute and then stores a reference value for each cell. Successive -values, averaged every 256 conversions, are compared to the stored value and checked for compliance with the drift band selection. Drift testing is abandoned when the system is active. Use Figure 6-6 to evaluate drift errors and/or change the drift band.

Long term load cell drift problems may be caused by electrical leakage or system structural problems. Since most systems usually experience inactive periods of 8 or more hours, this test is highly effective at catching long term drift problems. Long term drift testing provides 'early warning detection' for cells that may fail completely at a later date.

Evaluate Load Shift Error

Figure 6-4. Load Shift Error Evaluation Instructions.

Figure 6-5. Zero Shift Error Evaluation Instructions.

Evaluate Zero Shift Error

回顧問 - Switch Pressed

6.2.4 Noise Test

Noise testing identifies a load cell(s) that is experiencing unusual amounts of static state signal 'jitter'. The standard deviation for each cell output is computed every 256 AID conversions (12 seconds). The standard deviation values of all cells are -then compared to - one another. If the value of any one cell exceeds the values of all other cells by an amount greater than the imbalance band, an error is issued against that cell. Use Figure 6-7 to view the standard deviation for each cell and/or change the imbalance band Value.

Excessive noise may be introduced into a load cell through structural vibration or installation

location (fork lift traffic, etc.). Another factor could be a loose or corroded load cell connection. If a load cell checks out 'good' for all other diagnostic tests but fails the noise test, carefully check the mounting location and electrical connections.

NOTE: Noise testing also provides a good way to set the OXp-40 filter. Try the following:

1). Turn the filter off (select 50 msec filter, Figure 5-2).

2). View the standard deviation for each load cell (during non-error condition).

3). Enter the highest value standard deviation as the noise band value.

Evaluate Noise Error

Figure 6-7. Noise Error Evaluation Instructions.

6.2.5 Overload

Since overload is critical to system safety and load cell integrity, it is checked every 50 msec. Cell overload limits are typically set at the cell's rated capacity. A running peak value for each cell is recorded and may be checked (or cleared) at any In older weigh systems, overload typically signaled a total system overload (system capacity exceeded).

The DXp-40, however, can alert an operator to a single cell overload, even though total weight

does not exceed system capacity. Single cell overloads can be caused by heel buildup, shock loads (mixers/blenders, ingredient free fall force, etc.) and poor system design. Figure 6-8 provides a flow diagram for cell overload evaluation.

6.2.6 Recall Values

Recall values allows an operator to view the current TARE, ZERO, Balance, and Deadload values. Figure 6-9 shows how to recall any or all values.

Load Cell Overload Limit Selection

.

CELL OVERLOAD LIMITS YES NO EXIT	YES To Check Load Cell(s) Overload Condition MENU MENU Return To Previous Display SW1 YES Figure 5-7 - Evaluate Overload Error(s) SW2 NO Step To Recall Values SW3 EXIT Return To Cell Diagnostics
CELL #1 = 100000 LB STEP MODIFY EXIT MENU SW1 SW2 SW3 Image: Swite Stress Image: Swite Stress Image: Swite Stress Image: Swite Stress Repeat: For Each Load Coll Image: Swite Stress Image: Swite Stress Image: Swite Stress	Evaluate Current Values, Change If Necessary MENU MENU Return To Previous Display SW1 STEP Step To Next Load Cell SW2 MODIFY Enter Or Alter Displayed Value SW3 EXIT Return To Cell Overload Limits
CELL #1 = 100000 LB SHIFT INC DEC	Enter Or Alter Displayed Data Value MENU MENU Advance To Enter - Exit Menu SW1 SHET - Move Cursor To Next Digit SW2 INC Increment Displayed Value SW3 DEC Decrement Displayed Value
CELL #1 = 100000 LB SHIFT ENTER EXIT	ENTER To Save Data, Exit For Next Cell MENU MENU Return To Previous Display SW1 SHIFT - Return To Previous Display SW2 ENTER - Enter Displayed Value SW3 EXIT Return To Cell Number Display

- Switch Pressed

Figure 6-8. Overload Error Evaluation Instructions.

[Becal Zero?	YES to View Current Manual ZERO Value
Y	ES NO EXIT	MENU MENU Back Up To Previous Diaplay
MENU	SW1 5W2 SW3	SW1 YES View Total or Ind. Cell ZERO Value(s) SW2 NO Step To Receil Tara?
		SW3 EXIT Return To Recall Values?
		•
·		VES To View Aurent Toro Volus
	Hecali lare?	MENU MENU - Back Up To Previous Display
		SW1 YES _ View Total or Ind. Cell Tare Value(a)
		SW2 NO Step To Recall Cell Balance or Deadloed SW3 EXIT Return To Recall Values
B	ECALL PEAK LOAD?	YES To View Or Reset Peak Value Registers
Y	ES NO EXIT	MENU MENU _ Back Up To Provious Display
MENU	<u>SW1 SW2 SW3</u>	SW1 YES View or Reset Peak/Hold Registers SW2 NO Advance To Recall Cell Balance?
		SW3 EXIT _ Return To Recall Values?
If Deadload Calibration Pe	riomed	
	Recall Cell Balance?	YES To Review % Cell Sensitivity
Ŷ	ES NO EXIT	MENU MENU Back Up To Previous Display
MENU	6W1 6W2 5W3	SW2 NO Step To Recall Values?
		SW3 EXIT Return To Recall Values?
1+	25.00% 4+ 25.00%	View Cell % Sensitivity
2+	25.00% 3+ 25.00%	All Switches - Previous Display
MENU	SW1 SW2 SW3	
If Digital Calibration Perior	- bean	
	Recal Deadload?	YES To View System Deadload Value
Y	ES NO EXIT	MENU MENU Back Up To Previous Display
MENU	SW1 SW2 SW3	SW1 YES View System Deadload
		SW3 EXIT Go To Recall Values?
	07100 10	VER To View Individual Coll Deadland Values
	+ 351.00 LB	MENLI MENLI - Back in To Provide Display
		SW1 ND Select ind. Cell Display Units
		SW2
		one war - neur to network pispay
·		Select Individual Cell Display Units
IB		MENU MENU Back Up To Previous Disolay
		SW1 LB _ Display Units As Pounds
		SW2 %LOAD "Display Units As % Load SW3 EXIT Return To Previous Display
		- Selich Pressed

Recall Values (Zero, Tare, Balance or Deadload)

Figure 6-9. Recall Values Flow Diagram.

6.2.7 Degrade Mode Function

If a diagnostic test identifies one or more load cells in the system as providing faulty data, it is possible using degrade mode operation to eliminate the erroneous data from the cell(s) contributing to the system weight measurement. Since the DXp-40 measures each channel independently and digitally sums the weight information, degraded mode operation shuts off the actual measurement from the suspect channel(s) and uses a calculated digital substitute value, corrected for system balance and channel sensitivity. The resulting system performance will be reduced somewhat, but will still be compensated for load imbalance. This mode of operation makes it possible to continue weigh system operation with minimal interruption.

To activate degraded mode operation it is necessary to shut-off the suspect channel using the Cell Enable menu (Figure 6-10) accessed via the keypad. It is not possible to automatically activate this mode internally or remotely through the serial port.

Prior to degrade mode operation, a degrade mode reference must be established. This reference establishes individual cell characteristics for use in future degrade mode operation. To enter the reference point, perform the following: [1] Calibrate the system and acquire a system deadload zero (mV/V calibration also must acquire deadload zero).

[2] Load system to at least 20% of full scale capacity.

[3] Proceed to the Degrade Setup Menu (Figure 6-10) and make sure all cells are 'On'.

[4] With a display of ACQUIRE REFERENCE choose YES to advance to IS SCALE LOADED. Choose YES again to enter reference value.

When degrade mode is operational, a capital 'D' will appear on the right side of the internal LCD weight display. A capital '13' also will be transmitted in the status portion of the terminal and continuous serial outputs.

If the Modbus option is present, status 1 (registers 40003, 40203, arid 40403) bit 11 and input 12 (function 02) will be set to a '1'.

NOTE: Degrade mode cannot be implemented remotely using the serial interface or digital inputs.

NOTE: For proper, degrade mode function, the scale center of gravity must remain the same.

NOTE: To enter a degrade mode reference point, all cells must be functional, turned 'On', and the system must be loaded to at least 20% of total capacity.

Degrade Setup Menu

Switch Pressed

Figure 6-10. Degrade Mode Cell Selection and Reference.

6.2.8 Remote Input Enables (Optional)

Paragraph 8.3.1 defines the four remote inputs option-ally available with DXp-40 instruments. This section of diagnostic configuration determines whether or not individual remote inputs are enabled. Follow the flow diagram presented in Figure 641 to enable or disable each of the four inputs as desired. NOTE: Enabling the remote G/N input effectively disables the internal DXp- 40 display and switch (SW2) function (see Figure 4-1). If internal G/N display and SW2 function is desired disable the G/N remote input.

NOTE: If the remote filter input is disabled, filter 2 parameters are not accessible {see Figure 6-11 explanation).

DXp-40 Remote Input Enable/Disable Selection

 Selecting DISABLE nullifies second filter option. When enabled, remote input high a filter 1 and remote input low a filter 2.

Switch Pressed

Figure 6-11. Input Enable Selection.

SECTION 7. Serial Communication

7.1 GENERAL

The DXp-40 is equipped with a variety of standard and optional serial output formats that are selected using a series of DIP switches (Figure 7-1). DIP switch positions 1, 2, and 3 (Table 7-1) allow four format choices; Digi-System Network, continuous output, terminal/computer interface, and MODBUS RTU. Allen-Bradley Remote I/O is available as an option, but requires different documentation (see page 7-9). All types of DXp interfacing will be discussed in the following paragraphs. Positions 4-7 designate transmitter address for applications requiring more than one DXp unit (Table 7-2). Switch position 8 is unused and should be left in the '0' (ON) position.

7.1.1 L.Cp-400 Digi System Network.

Up to 16 DXp-40 transmitters can be networked to the I_Cp-400 Network Controller. The half duplex format used to run the network is designed to provide remote operation of gross, net, tare, zero, and diagnostics, at high speed. This format is not intended for direct interface with a terminal or computer. The baud rate is selectable to accommodate systems with very long (low baud) or short (high baud) distances between DXp units.

7.1.2 Standard Simplex Output (Continuous Output).

The simplex output format is designed to transmit gross weight data (ASCII coded) to a remote terminal or computer. The accuracy of this point to point, digital communication interface is much greater than simple analog current or voltage approximates. Simplex outputs are transmitted in the format on page 7-2, top left-hand column.

Switch Positions 1, 2, 3	Baud Rate	Interface
000	9600	Digi System Network
100	28800	Digi System Network
010	57600	Digi System Network
110	1200	Continuous Output
001	9600	Continuous Output
101	1200	Terminal Interface
011	9600	Terminal Interface
111		Modbus RTU

Table 7-1. Serial Interface and Baud Rate Selections.

Table 7-2. DXp-40 Transmitter Address Selections

Switch Positions	Address
4, 5, 6, 7	
0000	16
1000	1
0100	2
1100	3
0011	4
1010	5
0110	6
1110	7
0001	8
1001	9
0101	10
1101	11
0011	12
1011	13
0111	14
1111	15

Figure 7-1. Serial Communication Parameter Selection Switch.

STX/ADR/POL/DATA/SP/UNITS/MODE/STATU S/CR/LF

Where:	
STX=	1char. Start of Text (02H)
ADR=	DXp-40 unit address, 3 ASCII characters
POL=	Polarity sign; space for positive data,
	minus (-) for negative data
DATA=	7 char; six digits with decimal point or
	leading space, leading zeros = spaces
UNITS=	2 char; in demand mode 'LB' or 'KG'
	1 char; in continuous mode "L' or "K"
MODE=	2 char; in demand mode. GR (gross), NT (net) TR (tare), or ZR (zero0)
	1 char; in continuous mode, G (gross), N (net)
	T (tare), or Z (zero)
STATUS=	1char; M (motion), O (overload), or E (Error)
CR/LF=	2 char; carriage return, line feed (0DH/0AH)
SP=	1 char; ASCII space (20H)

Total bits per character = 1 start, 1 even parity, 7 data, and one stop.

7.1.3 Optional Computer/Terminal interface.

This half duplex (transmit and receive) format is de-signed for two way communication between a single DXp-40, or a network of DXp-40 units, and a computer/terminal. Protocol accommodates all operations such as gross, net, tare, zero, as well as remote filter 'selection. Use of this format requires customer developed device specific software to run the various network operations. Table 7-3 defines the terminal interface protocol.

Table 7-3. Computer/Terminal Interface Protocol.

Terminal Interface

ASCII Command	Description	Action	Response
' G'	GROSS	Switch to Gross mode	'01 0 LG' [adr/pol/data/sp/units/'G'/stat/CRLF]
'N'	Net	Switch to Net mode	'01 0 LN' [adr/pol/data/sp/units/'N'/stat/CRLF]
'T'	Tare	Switch to Net mode & Tare	'01 0 LN' [adr/pol/data/sp/units/'N'/stat/CRLF]
ʻZʻ	Zero	Switch to gross mode and Zero	'01 0 LG' [adr/pol/data/sp/units/'G'/stat/CRLF]
'W'	Weight	Send Current Weight	'01 0 LG/N' [adr/pol/data/sp/units/mode/stat/CRLF]
'RT'	Recall Tare	Send Current Tare Value	'01 0 LT' [adr/pol/data/sp/units/"T'/stat/CRLF]
'RZ'	Recall Zero	Send Current Zero Value	'01 0 LZ' [adr/pol/data/sp/units/'Z'/stat/CRLF]
'QT'	Quad Tare	Send Individual Tare Values	'01 + 0 + 0 + 0 + 0 LT' [adr/pol/data/sp(for cells 1-4)/units/'T'/stat/CRLF}
ʻQZʻ	Quad Zero	Send Individual Zero Values	'01 + 0 + 0 + 0 + 0 LZ' [adr/pol/data/sp(for cells 1-4)/units/'Z'/stat/CRLF]
'QG'	Quad Gross	Send Individual Gross Values	'01 + 0 + 0 + 0 + 0 LG' [adr/pol/data/sp(for cells 1-4)/units/'G'/stat/CRLF]
'QN'	Quad Net	Send Individual Net Values	'01 + 0 + 0 + 0 + 0 0 LN' [adr/pol/data/sp(for cells 1-4)/units/'N'/stat/CRLF]
'QV'	Quad mV/V	Send Individual mV/V Values	'01 + 0 + 0 + 0 + 0 0 MV' [adr/pol/data/sp(for cells 1-4)/units/'MV'/stat/CRLF]
'Q%'	Quad Percent	Send Individual %Load Values	'01 + 0 + 0 + 0 + 0 0 %L' [adr/pol/data/sp(for cells 1-4)/units/'%L'/stat/CRLF]

ASCII Command	Description	Action	Response
.QB.	Quad Balance	Send Individual %Balance Values	01 + 0 + 0 + 0 + 0 0 %B' [adr/pol/data/sp(for cells 1-4)/units/%B'/stat/CRLF]
*D%'	Dizg. % Load Shift	Send Current % Load Shift	'01 +0.00 +0.00 +0.00 +0.00 D%' [adr/pol/data/sp(for cells 1-4)/units/'D%'/stat/CRLF]
'DZ'	Diag. Zero Shift	Send Current Zero Shift	'01 + 0 + 0 + 0 + 0 0 DZ' [adr/pol/data/sp(for cells 1-4)/units/'DZ'/stat/CRLF]
'D+'	Diag. + Drift	Send Positive Cell Drift	'01 + 0 + 0 + 0 + 0 0 D+' [adr/pol/data/sp(for cells 1-4)/units/'D+'/stat/CRLF]
'D-'	Diag. • Drift	Send Negative Cell Drift	'01 - 0 + 0 + 0 + 0 0 D-' [adr/pol/data/sp(for cells 1-4)/units/'D-'/stat/CRLF]
'DN'	Diag. Noise Imbalance	Send Current Std. Dev. (adding 2 decimal places)	'0I + 0 + 0 + 0 + 0 0 Dn' [adr/pol/data/sp(for cells 1-4)/units/*DN'/stat/CRLF]
'DE'	Diag. Errors	Send Current Diagnostic Errors	'01 LZDNO LZDNO LZDNO', CRLFw Error for cells 1 - 4 L = Load Shift Z = Zero Shift D = Cell Drift N = Noise Imbalance O = Overload _ = No Error
'SC'	Set Continuous	Send Constant Weight Data Transmission	[adr/pol/data/sp/units/mode/stat/CRLF]
'SD'	Set Demand	Weight Data Upon Request	
'SFxxxxx'	Set Serial Format: where XXXXXX 0= 6 digits data l= 7 digits data xXXXXX 0= leading spaces l= leading zeros xXXXXX 0= decimal point l= no decimal point xXXXX 0= units (L/K) l= no units xXXXX 0= units (L/K) l= no units xXXXX 0= mode (G/N) l= no mode xXXXX 0= status l= no status	Changes To Serial Data Format	
'SLx'	Set Filter Length x=1: filter 50 ms x=2: filter 100 ms x=3: filter 200 ms x=4: filter 400 ms x=5: filter 800 ms x=6: filter 1600 ms x=7: filter 3200 ms x=8: filter 6400 ms	Enter or Alter Filter Length	
'SBxxx'	Set NoiseBand xxx= 000 to 250 display counts	Enter/Alter Noise Band	
'SRxxx'	Set Response Band xxx= 000 to 250 x 50 ms (0 to 12,500 ms max)	Enter/Alter Response Band	

Table 7-3 con't. Computer/Terminal Interface Protocol.

ASCII Command	Description	Action	Response
'SAx'	Set Band Filter: where x=1: 0.5 seconds x=2: 1 second x=3: 2 seconds x=4: 4 seconds x=5: 8 seconds x=5: 8 seconds x=6: 16 seconds x=7: 32 seconds x=8: 64 seconds	Set New Band Filter: notes 1 & 2	
'SSnx'/CR	Set Setpoint 'n' Value n=setpoint #, x=value (up to	7 ASCII chrs foliowed by CRLF)	
'RF'	Recall Serial Format		*01 RFxxxxxx'/CRLF
'RL'	Recall Filter Length		'01 RLx'/CRLF
'RB'	Recall Filter Band		'01 RBxxx'/CRLF
'RR'	Recall Filter Response	•	'01 RRxxx'/CRLF
'RA'	Recall Band Averaging		'01 RAx'/CRLF
"RSn"	Recall Setpoint # Value		'01 RSn200000x'/CRLF
"R0" Reca	all Set Point Outputs(xxxx=setpts 4- x='0' if setpoint off x='1' if setpoint on	1)	'01 R0xxxx'/CRLF
'Axx'	Address '01' - '16' Er	nable Addressed FSk-40 To Communicate All Others, Disabled	
Note 1	Remote filter settings are r	not stored in EEPROM and will revert to E	KPROM settings upon power down.
Note 2	Remote filter length is aver its own variable filter (banc within the band if the differ band setting.	raging applied to raw data before band or I flit) which is applied to delta data that re ence between the current data and the la	response is applied. Remote filter band has mains within the +/- band. Data remains ist averaged data is less than or equal to the
	Remote filter response set the next exceeds the noise falls within the response ba value still falls within the re of 50 msec, at which point	ting is added to the noise band setting. If band and falls within the response band and, the full noise band filter is applied. It esponse band, the noise band filter is pro- the noise band filter is restarted at the cu	the change in value from one conversion to , the following takes place: the first time data on subsequent conversions, the change in gressively reduced until it reaches a length irrent weight value.
	When changing data is out	tside both the noise and response bands,	the noise band filter is reset and restarted.
Abbreviations:	adraddress, 3 ASCIpolpolarity: ASCII pdataweight data: 7/8spACSCII space (2unitsone character: Lmodeone character: C	I chars: first two are '01' - '16' followed by lus or minus sign characters, 6/7 digits w/decirnal point or 20H) =pounds, K=kilograms Ggioss, N=net	v an ASCII space leading space
	stat weigh status. M-	-motion 0-overload E-diagnostic error	space-normal

Table 7-3 (cont.) Computer/Terminal Interface Protocol.

weigh status: M=motion, 0=overload, E=diagnostic error, space=normal stat

- CRLF carriage return line feed: two characters ODH OAR
- " single quotes: ASCII character string

7.1.4 Optional MODBUS Protocol

This interface method is applicable to virtually any PLC or other process control computer with MODBUS communication capability. The interface provides weight and diagnostics information and allows for remote computer control of tare, zero, and .gross/net functions as well as the ability to download new calibration data and set point values. Information is transmitted in blocks of data thereby minimizing polling and response delays. The interface operates with the DXp-40 configured as the slave device and the host computer as the master. Table 7-4 presents a complete overview of register and bit allocations for each MODBUS format. Figure 7-2 (page 7-9) presents the interface baud rate and parity selections.

MODBUS Functions Supported:

02 Read Input Status 03 Read Holding Registers 06 Preset Single Register 16 (10 Hex) Preset Multiple Registers

DXP40 Data Formats Provided:

FORMAT #1: One 16 bit signed integer - 32768 to 32767 for all weight data mV/V data is divided by 10

FORMAT #2: Two 16 bit signed integers for most weight data (the two integers must be added together to get -65536 to 65534) One 16 bit signed integer for diagnostic & %data One 16 bit signed integer for mV/V data (divided by 10)

FORMAT #3: Two 16 bit signed integers for all weight data (the high word, 1st integer, must be multiplied by 32768.0 then added to the low word, 2nd integer)

Table 7-4. MODBUS Register Allocations.

DXP40 READ ONLY REGISTERS (Function 03)

READ ONLY	FORMAT #1	FORMAT #2	FORMAT #2
	ADR #REG	ADR #REG	ADR #REG
ITEM			
1 – STATUS 3	40001 1	40201 1	40401 1
2 - STATUS 2	40002 1	40202 1	40402 1
3 - STATUS 1	40003 1	40203 1	40403 1
4 - GROSS	40004 1	40204 2	40404 2
5 - NET	40005 1	40206 2	40406 2
6 - GROSS CELL 1	40006 1	40208 2	40408 2
7 - GROSS CELL 2	40007 1	40210 2	40410 2
8 - GROSS CELL 3	40008 1	40212 2	40412 2
9 - GROSS CELL 4	40009 1	40214 2	40414 2
10 - NET CELL 1	40010 1	40216 2	40416 2
11 - NET CELL 2	40011 L	40218 2	40418 2
12 - NET CELL 3	40012 I	40220 2	40420 2
13 - NET CELL 4	40013 1	40222 2	40422 2
14 - MV/V/10 CELL 1	40014 1	40224 1	40424 2
15 - MV/V/10 CELL 2	40015 1	40225 1	40426 2
16 - MV/V/10 CELL 3	40016 1	40226 1	40428 2
17 - MV/V/10 CELL 4	40017 1	40227 1	40430 2
18 - % LOAD CELL 1	40018 1	40228 1	40432 1
19 - % LOAD CELL 2	40019 1	40229 1	40433 1
20 - % LOAD CELL 3	40020 1	40230 1	40434 1
21 - % LOAD CELL 4	40021 1	40231 1	40435 1
22 - PEAK TOTAL	40022 1	40232 2	40436 2
23 - PEAK CELL 1	40023 1	40234 2	40438 2
24 - PEAK CELL 2	40024 1	40236 2	40440 2
25 - PEAK CELL 3	40025 1	40238 2	40442 2
26 - PEAK CELL 4	40026 1	40240 2	40444 2
27 - TARE	40027 1	40242 2	40446 2
28 - TARE CELL 1	40028 1	40244 2	40448 2
29 - TARE CELL 2	40029 1	40245 2	40450 2
30 - TARE CELL 3	40030 1	40246 2	40452 2
31 - TARE CELL 4	40031 1	40250 2	40454 2
32 - ZERO	40032 1	40252 2	40456 2
33 - ZERO CELL 1	40033 1	40254 2	40458 2
34 - ZERO CELL 2	40034 1	40256 2	40460 2
35 - ZERO CELL 3	40035 I	40258 2	40462 2
36 - ZERO CELL 4	40036 1	40260 2	40464 2
37 - % SENSITIVITY CELL 1	40037 1	40262 1	40466 1
38 - % SENSITIVITY CELL 2	40038 1	40263 1	40467 1
39 - % SENSITIVITY CELL 3	40039 1	40264 1	40468 1
40 - % SENSITIVITY CELL 4	40040 1	40265	40469 1
41 - % LOAD SHIFT CELL 1	40041 1	40266 1	40470 1
42 - % LOAD SHIFT CELL 2	40042 1	40267 1	40471 1
43 - % LOAD SHIFT CELL 3	40043 1	40268 1	40472 1
44 - % LOAD SHIFT CELL 4	40044 1	40269 1	40473 1
45 - POS DRIFT CELL 1	40045 1	40270 1	40474 1
46 - POS DRIFT CELL 2	40046 1	40271 1	40475 1
47 - POS DRIFT CELL 3	40047 1	40272 1	40476 1
48 - POS DRIFT CELL 4	40048 1	40273 1	40477 1
49 - NEG DRIFT CELL 1	40049 1	40274 1	40478 1
50 - NEG DRIFT CELL 2	40050 1	40275 1	40479 1
51 - NEG DRIFT CELL 3	40051 1	40276 1	40480 1
52 - NEG DRIFT CELL 4	40052 1	40277 1	40481 1
53 - NOISE CELL !	40053 1	40278 1	40482 1
54 - NOISE CELL 2	40054 1	40279 1	40483 1
55 - NOISE CELL 3	40055 1	40280 1	40484 1

STATUS REGISTER DEFINITIONS (Function, 03)

STATUS 1 (GENERAL STATUS)

BIT 0 - ACTIVE FILTER, (0) = FILTER 1, (1) = FILTER 2 BIT 1 - MOTION BIT 2 - UNABLE TO TARE/ZERO BECAUSE OF MOTION BIT 3 - UNABLE TO ZERO BECAUSE OF LIMIT BIT 4 - IN CAL BIT 5 - DIAG ERROR BIT 6 - LIMIT OVERLOAD BIT 7 - A/D OVERLOAD BIT 8 - LOST TARE BIT 9 - ZERO BIT 10 - POWERUP BIT 11 - SPARE (0) BIT 12 - SPARE (0) BIT 13 - SPARE (0) BIT 14 - SPARE (0) BIT 15 - SPARE (0)

STATUS 2

BIT 0 - SETPOINT 1 BIT 1 - SETPOINT 2 BIT 2 - SETPOINT 3 BIT 3 - SETPOINT 4 BIT 4 - OVERLOAD LIMIT CELL 1 BIT 5 - OVERLOAD LIMIT CELL 2 BIT 6 - OVERLOAD LIMIT CELL 3 BIT 7 - OVERLOAD LIMIT CELL 4 BIT 8 - A/D UNDERLOAD CELL 1 BIT 9 - A/D OVERLOAD CELL 1 BIT 10 - A/D UNDERLOAD CELL 2 BIT 11 - A/D OVERLOAD CELL 2 BIT 12 - A/D UNDERLOAD CELL 3 BIT 13 - A/D OVERLOAD CELL 3 BIT 14 - A/D UNDERLOAD CELL 4 BIT 15 - A/D OVERLOAD CELL 4

STATUS 3 (DIAGNOSTIC ERRORS)

BIT 0 - LOAD SHIFT CELL 1 BIT 1 - LOAD SHIFT CELL 2 BIT 2 - LOAD SHIFT CELL 3 BIT 3 - LOAD SHIFT CELL 4 BIT 4 - ZERO SHIFT CELL 1 BIT 5 - ZERO SHIFT CELL 2 BIT 6 - ZERO SHIFT CELL 3 BIT 7 - ZERO SHIFT CELL 4 BIT 8 - DRIFT CELL 1 BIT 9 - DRIFT CELL 2 BIT 10 - DRIFT CELL 3 BIT 11 - DRIFT CELL 4 BIT 12 - NOISE CELL 1 BIT 13 - NOISE CELL 2 BIT 14 - NOISE CELL 3 BIT 15 - NOISE CELL 4

DXp-40 Read/Write Registers (Functions 03, 06, 16)

	Format #1	Format #2	Format #3
Read/Write	ADR #REG	ADR #REG	ADR #REG
CommanD*	40101 1	40301 1	40501 1
SETPOINT 1	40102 1	40302 2	40502 2
SETPOINT 2	40103 1	40304 2	40504 2
SETPOINT 3	40104 1	40306 2	40506 2
SETBOINT A	40105 1	40308 2	40508 2
SETTOINI 4	40105 1	40300 2	40508 2
	40100 1	40310 1	40510 1
FILTER I BAND	40107 1	40311 1	40511 1
FILTER I RESPONSE	40108 1	40312 1	40512 1
FILTER I BAND AVERAGE	40109 1	40313 1	40513 1
FILTER I MOTION	40110 1	40314 1	40514 1
FILTER 1 MOTION TIMER	40111 1	40315 1	40515 1
FILTER 2 LENGTH	40112 1	40316 1	40516 1
FILTER 2 BAND	40113 1	40317 1	40517 1
FILTER 2 RESPONSE	40114 1	40318 1	40518 1
FILTER 2 BAND AVERAGE	40115 1	40319 1	40519 1
FILTER 2 MOTION	40116 1	40320 1	40520 1
FILTER 2 MOTION TIMER	40117 1	40321 1	40521 1
DIAG SHIFT LIMIT	40118 1	40322 1	40522 1
DIAG ZERO SHIFT LIMIT	40119 1	40373 2	40522 2
DIAG DRIET I MIT	40120 1	40325 1	40525 2
DIAG NOISE LIMIT	40121 1	40226 1	40323 1
OVERI OND OF L	40121 1	40320 1	40526 1
OVERLOAD CELL I	40122 1	40327 2	40527 2
OVERLOAD CELL 2	40123 1	40329 2	40529 2
OVERLOAD CELL 3	40[24]	40331 2	40531 2
OVERLOAD CELL 4	40125 1	40333 2	40533 2
COMMAND 01 = TARE net weight 02 = ZERO gross weight	SETPOINT any pos weight value	DIAG SHIFT LIMIT 0 - 99 (0% - 9.9%)	
DIAG ZERO SHIFT LIMIT any pos weight value	DIAG DRIFT LIMIT 0 - 99 counts	DIAG NOISE LIMIT 0 - 99 counts	
FILTER LENGTH	NOISE BAND	BAND FILTER	MOTION
00 = 50ms	0 - 250 counts	00 = 0.5 seconds	00 = OFF
01 = 100ms	ie. if counting	01 = 1 second	01 = 1 count
02 = 200ms	by 2 lbs:	02 = 2 seconds	02 = 2 counts
03 = 400ms	02 = 4 lbs	03 = 4 seconds	03 = 3 counts
04 = 800ms		04 == 8 seconds	04 = 5 counts
05 = 1600ms		05 = 16 seconds	05 = 10 counts
06 = 3200ms	RESPONSE BAND	06 = 32 seconds	06 = 20 counts
07 = 6400ms	0 - 250 counts	07 = 64 seconds	07 = 50 counts
MOTION TIMER	OVERLOAD		
00 = 1/2 SEC	any pos weight value		
01 = 1 SEC			
02 = 2 SEC			
03 = 3 SEC			

Note: counts refers to displayed counts. If the display is counting by 2 (x2 increments), then presetting a register to 9 would equal 18 lb/ph/etc.

Table 7-4 (cont.) Input Status Bit Designations.

INPUT STATUS DEFINITIONS (Function, 02)

÷.

INPUT 1 - ACTIVE FILTER, (0) = FILTER 1, (1) = FILTER 2 INPUT 2 - MOTION INPUT 3 - UNABLE TO TARE/ZERO BECAUSE OF MOTION INPUT 4 - UNABLE TO ZERO BECAUSE OF LIMIT INPUT 5 - IN CAL INPUT 6 - DIAG ERROR INPUT 7 - LIMIT OVERLOAD INPUT 8 - A/D OVERLOAD INPUT 9 - LOST TARE INPUT 10 - ZERO INPUT 11 - POWERUP INPUT 12 - SPARE INPUT 13 - SPARE INPUT 14 - SPARE INPUT 15 - SPARE INPUT 16 - SPARE INPUT 17 - SETPOINT 1 INPUT 18 - SETPOINT 2 INPUT 19 - SETPOINT 3 INPUT 20 - SETPOINT 4 INPUT 21 - OVERLOAD LIMIT CELL 1 INPUT 22 - OVERLOAD LIMIT CELL 2 INPUT 23 - OVERLOAD LIMIT CELL 3 INPUT 24 - OVERLOAD LIMIT CELL 4 INPUT 24 - A/D UNDERLOAD CELL 1 INPUT 26 - A/D OVERLOAD CELL 1 INPUT 27 - A/D UNDERLOAD CELL 2 INPUT 28 - A/D OVERLOAD CELL 2 INPUT 29 - A/D UNDERLOAD CELL 3 INPUT 30 - A/D OVERLOAD CELL 3 INPUT 31 - A/D UNDERLOAD CELL 4 INPUT 32 - A/D OVERLOAD CELL 4 INPUT 33 - LOAD SHIFT CELL 1 INPUT 34 - LOAD SHIFT CELL 2 INPUT 35 - LOAD SHIFT CELL 3 INPUT 36 - LOAD SHIFT CELL 4 INPUT 37 - ZERO SHIFT CELL 1 INPUT 38 - ZERO SHIFT CELL 2 INPUT 39 - ZERO SHIFT CELL 3 INPUT 40 - ZERO SHIFT CELL 4 INPUT 41 - DRIFT CELL 1 INPUT 42 - DRIFT CELL 2 INPUT 43 - DRIFT CELL 3 INPUT 44 - DRIFT CELL 4 INPUT 45 - NOISE CELL 1 INPUT 46 - NOISE CELL 2 INPUT 47 - NOISE CELL 3 INPUT 48 - NOISE CELL 4

MODBUS Configuration Parameters

	MODBUS INTERFACE?			YES To Configure MODBUS Parameters
	YES	NO -3	EXIT.	MENU MENU Advance To 'DXP40 Version Information'
	SWI	\$₩2	SW3	SW2 NO Go To 'DXP40 Version Information' SW3 EXIT Return To Live Operation
	BAUDRATE = 9600			Modify To Select 2400, 4800, 9600, or 19200 Baud
	STEP	MODIFY	EXIT	MENU MENU _ Return To Previous Display
	SWI	5W2	SW3	SW2 MODIFY. Select Desired Baud Rate SW3 EXIT Return MODBUS Interface?
	No Parit	<u>y</u>]	Modify To Select Parity - No, ODD, EVEN
	STEP	MODIFY	EXIT	MENU MENU - Return To Previous Display
MENU	SWI	SW2	SW3	SW2 MODIFY. Select Desired Parity Option SW3 EXIT Return To MODBUS Interface?

Figure 7-2. MODBUS Baud Rate and Parity Selections (accessed from main menu).

7.1.5 Optional Allen Bradley Remote 110

This interface option uses Allen Bradley components in the DXp-40 to establish a remote I/O network communication link to the PLC 5 series of programmable logic controllers. To the PLC, the DXp-40 represents 1/4 rack of discrete I/O with 32 bits of input and output image files. All weight and status data uses discrete reads and writes to communicate scale information to the PLC in the shortest time possible. Non time critical information such as higher level diagnostics relies upon block transfers.

The complete details of this interface are covered in the BLH Allen-Bradley Remote I/O Interface Manual (TM014).

SECTION 8. Process Control

8.1 GENERAL.

The DXp-40 is available with optional analog outputs and discrete inputs and outputs that allow it to be used as a blind local controller supervised by a host computer (Figure 8-1). This control strategy off-loads simple control actions to the DXp-40, thereby reducing processing overhead in the host. It also maximizes response time for more precise set point cutoffs resulting in less product variation.

Main Menu (Accessed from Operation Mode)

Figure 8-1. Analog and Set Point Selections in Main Menu.

8.2 OPTIONAL ANALOG OUTPUT

The DXp-40 is available with an optional 0-10 V and 4-20 mA analog output, representing either gross or net weight. This output is based upon a 16 bit digital to analog (D-A) conversion which represents up one part in 65536 of analog precision. The scaling of the output is accomplished after the DXp-40 is calibrated and can be ranged for any portion of the gross or net weight output curve. Systems using the analog output for level control will typically configure the output to track gross weight (live product weight). Batch control systems that use weight as a variable to determine set point cutoffs can be configured to operate in the net weighing mode while using a discrete remote input to activate the tare function. Connect a current/volt meter to the appropriate analog output points (see Figure 2-5) and proceed with configuration as shown in Figure 8-2.

Analog Output Configuration

Figure 8-2. Analog Output Configuration Flow Diagram.

8.3 OPTIONAL DISCRETE INPUTS and OUTPUTS

8.3.1 Inputs

Remote initiation of zero, tare, gross/net, and a two position digital filter can be accomplishedusing-the optional remote input connections (Figure 8-3). Remote inputs can be triggered by 12-24 VDC input signals (DIAG A - common output rating on many PLCs), open collector TTL devices (DIAG B), or other relays (DIAG C).

Open collector TTL and 12-24 VDC inputs are enabled in the logic low ('0') state. Logic low voltage is less than 5 VDC and current sinking capability must be no less than 3 mA. For a logic high ('V), the voltage range is 10 to 28 VDC. If TTL triggering is desired, open collector components MUST be used.

When using external relays, a closed relay equals '0' when one side of the relay is connected to digital common and the other side is connected to the input. A '1' is achieved by opening the relay.

PLC or DCS batch control systems can be configured to use these remote functions in combination with set point outputs to provide local ingredient add/discharge control Inputs function as shown in Figure 8-3.

NOTE: DXp-40 unit's ship with all remote inputs disabled. To enable any or all of the remote inputs, refer to paragraph 6.2.8 for instructions

8.3.2 Outputs

Four programmable contact relay outputs are available as set point or diagnostic alarm outputs. In the set point mode, each relay can be programmed to track gross or net operation and to have a deadband to eliminate relay chatter. In addition, the polarity, (normally open or normally closed 'position) 'of the relay is selectable using jumpers on the relay board (units are shipped in the normally open position). Also, the relay condition above or below set point, or operation and a polarity sensitive mode is selectable. Set point values can be entered via the keypad or remotely through the serial port.

Figure 8-3. Digital Input Functions and Circuitry.

In addition to the use of relays for set point operation, the outputs can be configured to track any of the optional diagnostic functions. This provides a very simple method of communicating diagnostic alarms to a host computer or operator. Figure 8-4 provides instructions for relay configuration and Figure 8-5 (next 'page) shows how to enter actual set point values. Tables 8-1 and 8-2 (next page) show set point polarity and hysteresis capability.

NOTE: NC/NO (normally dosed/normally open) selection not available with solid state relays

Setpoint Relay Output Configuration

Figure 8-4. Relay Output Configuration.

Setpoint Entry Sub-Menu

Figure 8-5. Set Point Value Entry Sub-Menu.

Table 8-1. Relay Output Selections and Parameters

Selectable Set Point Types And Respective Parameters							
Set Point Type	Programmable Parameters						
Gloss Set Point	On Below Or Above	Hysteresis					
Net Set Point	Hysteresis						
Diagnostic Alarm							

Table 8-2. Relay Output Polarity Selections

Set Point Type	Relay Energized	Hysteresis Active
Gross On Below Set	Below Set Point	Below Set Point
Point		
Gross On Above Set	Above Set Point	Above Set Point
Net Set Point (ABS	Below Set Point	Below Set Point
Diagnostic Alarm	If Diagnostic Error	None

Appendix A – Part Numbers

Spare Parts

	Power Supply/A-D Board	PN 465741-3
	Display Board (standard LCD panel)	PN 466003-3
	Standard CPU Board w/o EPROM	PN 466217-2
	Programmed EPROM (specify code)	PN 466216-1
		(147697-8)
	Load Cell Terminal Block Connector (7 pos)	PN 149005-8
	RS-485 Terminal Block Connector (4 pos)	PN 148709-8
	Analog and Relay I10 Board (Optional)	PN 466870-2
	CPU Board with Allen-Bradley Remote I/O	PN 466805-2
		(w/o EPROM)
Docur	nentation	
	Outline Drawing NEMA 4/4X	PN 464952-3
	Outline Drawing Exp. Proof	PN 465545-3
	Outline Uncased	PN 466211-3
	Interconnect Wiring	PN 466181-3
	Assembly Drawing	PN 466126-3
	Operator's Manual	ITA 008
Acces	sories	
	625 Calibrator	PN 203797
	Conduit Fitting Kt	PN 465231
	Cable Fitting Kit	PN 465232

Appendix C. LCp-40 Series Remote Display

When connected to a BLH LCp-40 series (40, 41, or 42) network controller, DXp-40 weight values can be displayed remotely. In addition to remote display, ZERO and TARE functions can be implemented from the LCp instrument keypad. The following flow diagram defines DXp-40 functions available through an LCp-40 series controller.

LCp-40, 41, or 42 Remote Operation Flow Diagram

BLH

3 Edgewater Drive Norwood, MA 02062 USA Phone (781) 298-2200 Fax (781) 762-3988

www.vishaypg.com